Main Page   Modules   Data Structures   File List   Data Fields   Globals   Related Pages  

gnn_gradient_descent : Gradient Descent Algorithm.
[gnn_trainer : Trainers for Models.]


Detailed Description

The present trainer provides an implementation of the gradient descent algorithm for parameter optimization. Gradient descent is the simplest parameter optimization procedure based on the gradient. At each step, the parameters are updated using the following rule:

where is called the "learning rate", and determines the step-size that are taken. The value of the learning rate depends on the problem, but tipical values lie between . Smaller values tend to get trapped at local minima, but larger values often overshoot optimum values.

Functions

int gnn_gradient_descent_reset (gnn_trainer *trainer)
 The trainer's "reset" implementation.

int gnn_gradient_descent_train (gnn_trainer *trainer)
 The trainer's "train" implementation.

void gnn_gradient_descent_destroy (gnn_trainer *trainer)
 The trainers "destroy" implementation.

gnn_trainergnn_gradient_descent_new (gnn_node *node, gnn_criterion *crit, gnn_dataset *data, double mu)
 Creates a new gradient descent trainer.

double gnn_gradient_descent_get_mu (gnn_trainer *trainer)
 Gets the learning rate.

int gnn_gradient_descent_set_mu (gnn_trainer *trainer, double mu)
 Sets the learning rate.


Function Documentation

void gnn_gradient_descent_destroy gnn_trainer   trainer [static]
 

Parameters:
trainer  A pointer to a gnn_gradient_descent.

Definition at line 146 of file gnn_gradient_descent.c.

double gnn_gradient_descent_get_mu gnn_trainer   trainer
 

This function returns the learning rate used by the gradient descent trainer.

Parameters:
trainer  A pointer to a gnn_gradient_descent.
Returns:
Returns the learning rate .

Definition at line 244 of file gnn_gradient_descent.c.

gnn_trainer* gnn_gradient_descent_new gnn_node   node,
gnn_criterion   crit,
gnn_dataset   data,
double    mu
 

This function creates a new gradient descent trainer (gnn_gradient_descent). It uses the learning rate given by "mu".

Parameters:
node  A pointer to a gnn_node.
crit  A pointer to a gnn_criterion : Basic Criterion Function..
data  A pointer to a gnn_dataset : Datasets for Training..
mu  The learning rate .
Returns:
Returns a pointer to a new gnn_gradient_descent trainer.

Definition at line 179 of file gnn_gradient_descent.c.

int gnn_gradient_descent_reset gnn_trainer   trainer [static]
 

Parameters:
trainer  A pointer to a gnn_gradient_descent.
Returns:
Returns 0 if suceeded.

Definition at line 88 of file gnn_gradient_descent.c.

int gnn_gradient_descent_set_mu gnn_trainer   trainer,
double    mu
 

This function sets a new value for the learning rate used by the gradient descent trainer. The learning rate should be strictly positive.

Parameters:
trainer  A pointer to a gnn_gradient_descent.
mu  The learning rate .
Returns:
Returns 0 if suceeded.

Definition at line 266 of file gnn_gradient_descent.c.

int gnn_gradient_descent_train gnn_trainer   trainer [static]
 

Parameters:
trainer  A pointer to a gnn_gradient_descent.
Returns:
Returns the mean cost.

Definition at line 110 of file gnn_gradient_descent.c.


Generated on Sun Jun 13 20:51:44 2004 for libgnn Gradient Retropropagation Machine Library by doxygen1.2.18