where
is called the "learning rate", and determines the step-size that are taken. The value of the learning rate depends on the problem, but tipical values lie between
. Smaller values tend to get trapped at local minima, but larger values often overshoot optimum values.
Functions | |
| int | gnn_gradient_descent_reset (gnn_trainer *trainer) |
| The trainer's "reset" implementation. | |
| int | gnn_gradient_descent_train (gnn_trainer *trainer) |
| The trainer's "train" implementation. | |
| void | gnn_gradient_descent_destroy (gnn_trainer *trainer) |
| The trainers "destroy" implementation. | |
| gnn_trainer * | gnn_gradient_descent_new (gnn_node *node, gnn_criterion *crit, gnn_dataset *data, double mu) |
| Creates a new gradient descent trainer. | |
| double | gnn_gradient_descent_get_mu (gnn_trainer *trainer) |
| Gets the learning rate. | |
| int | gnn_gradient_descent_set_mu (gnn_trainer *trainer, double mu) |
| Sets the learning rate. | |
|
|
Definition at line 146 of file gnn_gradient_descent.c. |
|
|
This function returns the learning rate
Definition at line 244 of file gnn_gradient_descent.c. |
|
||||||||||||||||||||
|
This function creates a new gradient descent trainer (gnn_gradient_descent). It uses the learning rate given by "mu".
Definition at line 179 of file gnn_gradient_descent.c. |
|
|
Definition at line 88 of file gnn_gradient_descent.c. |
|
||||||||||||
|
This function sets a new value for the learning rate
Definition at line 266 of file gnn_gradient_descent.c. |
|
|
Definition at line 110 of file gnn_gradient_descent.c. |
1.2.18