In other words, it replicates the input several times on the output vector. If the output vector's size isn't a multiple of the input vector's size, that is, if
can't be written as
, then only the first inputs will be copied, e.g. if
and
is of size
then
Schematically, this idea can be depicted as
The function's gradient is:
Typedefs | |
| typedef _gnn_convergence | gnn_convergence |
| The structure for a gnn_divergence : Input Divergence. node. | |
| typedef _gnn_divergence | gnn_divergence |
| The structure for a gnn_divergence : Input Divergence. node. | |
Functions | |
| int | gnn_divergence_f (gnn_node *node, const gsl_vector *x, const gsl_vector *w, gsl_vector *y) |
| Computes the output. | |
| int | gnn_divergence_dx (gnn_node *node, const gsl_vector *x, const gsl_vector *w, const gsl_vector *dy, gsl_vector *dx) |
Computes
. | |
| int | gnn_divergence_dw (gnn_node *node, const gsl_vector *x, const gsl_vector *w, const gsl_vector *dy, gsl_vector *dw) |
Computes
. | |
| gnn_node * | gnn_divergence_new (size_t input_size, size_t output_size) |
| Creates an input divergence node. | |
|
|
This datatype holds the information for a gnn_divergence : Input Divergence. node. Basically, it extends the gnn_node with special pointers to get fast accesses to the needed vector slices. Definition at line 48 of file gnn_convergence.h. |
|
|
This datatype holds the information for a gnn_divergence : Input Divergence. node. Basically, it extends the gnn_node with special pointers to get fast accesses to the needed vector slices. Definition at line 48 of file gnn_divergence.h. |
|
||||||||||||||||||||||||
|
Definition at line 191 of file gnn_divergence.c. |
|
||||||||||||||||||||||||
|
Definition at line 145 of file gnn_divergence.c. |
|
||||||||||||||||||||
|
Definition at line 102 of file gnn_divergence.c. |
|
||||||||||||
|
This function creates a node of the gnn_divergence : Input Divergence. type.
Definition at line 217 of file gnn_divergence.c. |
1.2.18